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Final Report - Period: 10/15/90 - 1/14/93
AFOSR Grant 91-0004

"A Novel Approach For Structural Mechanics Problems
With Stochasticity"

by P. D. Spanos
Mechanical Engineering

Rice University
Houston, Texas

Based on the support provided by the aforementioned grant,
considerable advances were made in several structural mechanics
problems with stochasticity.

A new method for the solution of problems involving material
variability was developed. The material variability was modeled
as a stochastic process. The Karhunen-Loeve expansion of random
processes was used to represent the material variability in a
computationally expeditious manner. The well-known deterministic
finite element method has been employed to discretize the
differential equation which governs the nodal response random
variables. An related spectral expansion of these random
variables was adopted in terms of the basis in the space of
second nodal random variables. This method yielded a
representation of the response surface in terms of the polynomial
chaos. The coefficient in this representation was such that it
involved enough information about the process so that one could
reproduce its probability distribution function. The method has
been applied to a plain-stress problem which involves a curved
geometrical boundary. The representation of the random field
over the curved domain was accomplished by solving the related
integral equation using a Galerkin formulation. Interestingly,
the result of the representation is independent of the mass size
which was employed, and converged quite rapidly as the number of
terms in the Karhunen-Loeve expansion increased. Even more
encouraging was the fact that the analytical results were found
in extremely good agreement with data produced by a Monte-Carlo
study of the problem. The findings of this research effort have
been summarized in the paper:

"Stochastic Finite Element Analysis With Curved
Boundaries," by R. G. Ghanem and P. D. Spanos,
Proceedings of the Sixth International Conference on
Application of Statistics and probability in Civil
Engineering, Mexico City, Mexico, 1991, June 7-9, 1991,
pp. 158-165.

An effort was undertaken to develop a formulation of
stochastic concepts towards a unification of various finite
element techniques. Specifically, methods for the solution of
differential equations with random processes and coefficients
have been addressed. The method which was advocated treats the
random aspects of the problem as an added dimension. In this
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manner, a formulation for the stochastic finite element method
has been derived which can be construed as a natural extension of
the deterministic finite element method. Finite element
representation a1png the random dimension was achieved by two
spectral expansions. One of them was used to represent the
coefficients of the differential equation which modeled the
random material property, and the other one was used to represent
the random solution process. The new concepts were implemented
by using a number of computational models as simple engineering
systems. The new method indeed involves generalizing the
concepts of finite element approximation to abstract spaces of
which the usual Euclidian space is a special case. The
deterministic case can be regarded as a digression of this
formalism to the particular case where the space of elementary
events involves only a single element, and where the probability
density function induced on the associated a-algebra is the
uniform distribution. The findings of these research efforts
have been summarized in the paper:

"A Spectral Formulation of Stochastic Finite Elements,"
by R. G. Chane= and P. D. Spanos, Proceedings of the
Tenth International Invitational Unification of Finite
Element Methods Symposium, July 18-19, 1991, Worcester
Polytechnic Institute, Worcester, MA, pp. 59-82.

Another numerical method for dealing with problems of
stochastic mechanics has been pursued and it involves a small
number of random parameters. This method is analogous to the
Monte-Carlo simulation method, but it is more efficient. In
fact, the method treats a stochastic problem as an ensemble of
deterministic ones. After solving a number of deterministic
problems, statistic~l analysis is performed to deduce the
necessary parameters characterizing the random nature of the
solution. Of course, this method is often the only option which
is available to solve complicated stochastic problems. However,
indiscriminate use of the method is not advocated due to the
significant computational cost. The new method has been used for
the determination of the eigenvalues of a beam bending problem
with random parameters. The beam is assumed to be clamped-
clamped of unit length, and its rigidity is a truncated normal
process with mean equal to one and with exponential auto-
correltioh function. This kind of problem is quite difficult to
be treated either analytically or by other numerical methods. In
fact, the available algorithms can be applied in the case of very r
small randomness and they are quite costly computationally. The
new method has been used to determine the first three eigenvalues
of this problem. It was found that the analytical results are in
very good agreement with the results obtained by numerical
simulations of this problem. Further, it has been found that the
new method can be applied to a wide class of problems dealing
with random variables and stochastic processes. The findings of
this research effort have been summarized in the paper: ..

-2- .
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"Pseudo-Simulation Method For Stochastic Problems," by
B. A. Zeldin and P. D. Spanos, Proceedings of the Sixth
Probabilistic Mechanics, Structural and Geotechnical
Reliability Specialty Conference, American Society of
Civil Engineers, Boulder, CO, July 7-9, 1992, pp. 37-
40.

Another approach to dealing with problems of the numerical
solution of stochastic mechanics problems has been pursued.
Specifically, the Finite Difference Method for discretization of
stochastic continuous media has been addressed. The Neumann
expansion and perturbation methods used for solving the systems
of the associated algebraic equations have been studied.
Further, work has been done into the dependence on the mass size
of the discretization. It has been found that a mixed
formulation which involves both strain and stresses as
independent variables improves the performance of the method and
reduces the dependence on the mass size. The method has been
used to study the behavior of a beam which is subjected to
deterministic load and involves bending rigidity which is a
normal random process. It has been found that the mixed
formulation includes the convergence of the Neumann expansion,
and it minimizes its dependence on the mass size. This is
particularly true with regards to the variability of the
displacement, even when the coefficient of variation of the
bending rigidity is quite large. The findings of this research
effort have been summarized in the paper:

"Stochastic Mixed Finite Difference Method," by P. D.
Spanos and B. A. Zeldin, Proceedings of the Sixth
Probabilistic Mechanics, Structural and Geotechnical
Reliability Sp9cialty Conference, American Society of
Civil Engineers, Boulder, CO, July 7-9, 1992, pp. 804-
807.

A class of Galerkin-type projection procedures applied for
random media for stochastic mechanics problems has been
developed. The use of a space of simple random variables as
projective has been adopted. Further, it has been shown that in
this case this procedure is equivalent to a generalization of
sampling technique. Then, the optimality of this indirect
sampling Ifas been investigated. It has been shown that this
method is a generalized stratified sampling method. That is, the
approximation of the problem from the space of sample random
variables produces an error with mean and conditional
expectation, given sigma-algebra induced by this partition, equal
zero. It has been shown that this error has zero estimate from
the set of indicator functions of given stratification. Some
stochastic mechanics problems have been considered utilizing the
proposed method. It has been shown that the Loeve-Karhunen
expansion is a versatile tool for the approximation of a
stochastic field through a set of random variables. This



expansion is optimal and, therefore, a small number of random
variables can approximate them adequately. Several examples have
demonstrated that the proposed method can be applied for treating
a wide class of problems dealing with random variables and
stochastic processes. The findings of this research effort have
been summarized in the paper:

"Indirect Sampling Method For Stochastic Mechanics
Problems," by P. D. Spanos and B. A. Zeldin,
Proceedings of the Sixth International Conference of
Structural Safety and Reliability, Innsbruck, Austria,
August 8-13, 1993 (to appear).

In terms of personnel, it is stated that in addition to the
supervising professor, two research assistants were involved in
the projects. One was supported exclusively by the research
grant from AFOSR, and another was jointly supported by this AFOSR
grant and discretionary funds from Rice University. The two
research assistants and the supervising professor formed a very
coherent group which worked with enthusiasm in this challenging
technical field.
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manner, a formulation for the stochastic finite element method
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the deterministic finite element method. Finite element
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spectral expansions. One of them was used to represent the
coefficients of the differential equation which modeled the
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number of random parameters. This method is analogous to the
Monte-Carlo simulation method, but it is more efficient. In
fact, the method treats a stochastic problem as an ensemble of
deterministic ones. After solving a number of deterministic
problems, statistical analysis is performed to deduce the
necessary parameters characterizing the random nature of the
solution. of course, this method is often the only option which
is available to solve complicated stochastic problems. However,
indiscriminate use of the method is not advocated due to the
significant computational cost. The new method has been used for
the determination of the eigenvalues of a beam bending problem
with random parameters. The beam is assumed to be clamped-
clamped of unit length, and its rigidity is a truncated normal
process with mean equal to one and with exponential auto-
correlatioh function. This kind of problem is quite difficult to
be treated either analytically or by other numerical methods. In
fact, the available algorithms can be applied in the case of very
small randomness and they are quite costly computationally. The
new method has been used to determine the first three eigenvalues
of this problem. It was found that the analytical results are in
very good agreement with the results obtained by numerical
simulations of this problem. Further, it has been found that the
new method can be applied to a wide class of problems dealing
with random variables and stochastic processes. The findings of
this research effort have been summarized in the paper:
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variables produces an error with mean and conditional
expectation, given sigma-algebra induced by this partition, equal
zero. It has been shown that this error has zero estimate from
the set of indicator functions of given stratification. Some
stochastic mechanics problems have been considered utilizing the
proposed method. It has been shown that the Loeve-Karhunen
expansion is a versatile tool for the approximation of a
stochastic field through a set of random variables. This
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Pr'rceeding,> of tl,, Sixth Internatijonal Conterer-.?
on Applications of Statistici antd Probabllitv in
Civ'il Engineering, 1991, Mexico- cjtý, Mexico

1) ~~Stochastic Finite Elc'niclit \iiv-sWith Curved Boundarieis

R.G. GhAnein P) D. Spanos

Abstract

An original method for the solution at problems involving material variability is proposed. Trhe
mnaterial property is inodclcdl &a a storl~taue pror-ks. riie garhunen-Loeve expansion is used to
rCrarcewit this pre)(c!;s lin s, onipitat~ional~y expediernt manner. The standard deterministic finite

ch-w tvtl ....l ;. -. popiy-. to I n i z lia 4414-r-0-. 1 ,.,;v .i 1.t ionti govvirn inj tits rndal respionse

ravdom variables. A ape<tral cxp&.5i0tit of thesie randomi variables is then adopted int ticons of
a blasts in Lthe space or sccosid ordrr randoin variables. Trhe method yields an expression for the
response surface in terms of Lthe Polynomial r1hCliaoee The coefficients in the* expanision are such
that they inivolve enouigh informiltion about Ltme f-aponse process so sa to be possible to repr,%duce
its probiability haritii il uction. Thme inedwId is applicd to a plane-stress problem involving
'% elrs~ l-.l .. im II,',irv tlirf. l..(iar' rnilomo firld over the rurvofh domatin is
act~ommph luŽJe by &o~sii Li te ri ut<d ii t1grnh 1m1jmmili .ia i g CA (.ftdcrkimm rOremmUlatim1.a '114411 e~Wit~ilmg

represenmtation ist imdcp.2nliiit of Lt *m' Momr~m eW! employed amid converges rapidly a" the number of
terms in tlmm lmrmni-L Ce sj1;uS1`alml 16 14.crC:%AcI.

I' Introduction

The analysis of cnginecring systems wvith uncertain properties has witnessed a considerable resurgence
in recent years, in particular with relation to systems involving many degrees of freedom and requiring
recourse to the finite elemnctit method for their analysis and dlesign- A comprehensive treatment
of this class of problems can be accomplished by breaking down the comple.Xity into two separate
issues. The first one cmoniists of amlcquaLcly rcrprctcnting the uncertainty in the system properties

for implementation within a computational framework. The Karhuncn-Loeve expansion is used in
this paper as an optimal such reprviseiltation. It effectively replaces the random process by a set
of uncorredatcd random variablmhc while delegacing the corresponding spatial dependence to a set of
dletermninistic functions. Thme tecumid issue involved in the solution process is obtaining a representation

for the response process. This task is accomplished by first identifying a complete basis for such a
representation, ai,d then by formulating the problemi in such a way talat the coefficients of this basis
in the representation can be numerically comnputed. In this paper, earlier formulations of the ideas
presented above (Spanois and Chantem, 1089. 1090, 1991) are extended to deal with situations where the
geometry of the domain untder consideration is irregular, invol..ng curved boundaries. The efficiency
of the proposed method *,i treating such problems is demonstrated by its application to the anaysis of
.a curved thin plaitc. lit l adrr..ting .t~ils probjelean it it. renmimmlel that the ultimate goal of a stochastic
finlite element anllysis is thke C'c'dm146tioi Ur Ctrt.Limi ,tatistics of the response proceiss. These statistics

can be in the form of either statistical moments, or probability distribution function, or some other
mneasure of Lthe reliability of the system. As a first strp in the solution procedure, the variational
forimilation of the Finite ec-lenent tnn'thod is liscu to obtain a spatially discrete form of the problem.
F~ollowing that, the Polynomial Chaos expansion is used to derive a representation of Lthe response
process. Statistical moments and pirobability distribution functions can then obtained.

.Civil Engineering Deparrmemat, Stat~e Univerfit~y of Nrw Ycomk, tBuhtslo. NY 14260,

IL.B. Ityon Chair in R~nei,.fice Umtivtsatv. ~-,s TX, 77251.



Figure 1: Plate with Random Rlig;dity. Exponr'ntial Covariance Model.

2 Finite Elenent Formnulation

Consider th , thin plate shown in Figure (1). Its modulus of elasticity is assumed to be the realization of

a two-dimensional Gaussian random process with known mean value E and known covariance function

C(x1 ,x 2). Further, it is assumed that the cxterii;d vxcitkjon ins ,ctertniutistic and of unit magnitude.
Let the domain A of the plate be discretized into N four-noded quadrilateral fin:.e elements, each

element having eight degrees of freedom. The strain energy y' stored in each element A, can be
expressed as

ve= _ ffT(x) e(x) dA' . (1)

where dA4 is a di7'erential element in Ae. Further, o'(x) and e(x) denote the stress and the strain
vectors respectively, s a function of the location x wit.hin each element. Assuming Linear elastic

material behavior, the stress may be expressed in terms of t!e strain as

e- = D0 # (2)

where D' is the matrix of constitutive relations, Here o- and 4 -.re the vectors of stress and strain -. s

given by the equation
rTr = 7ý ,rj' (3)

eT= [ G " . (4)

where u%, is the stress along direction z, and '•, is the strain along that same direction. For the plane

stress problem considered herein, D' is given by the equation

D Eh(x) I 1 ,u 0 ]

= D ie - ,,4 1 0 =Ej(X) PC, (5)
S0 (L-•,:-

where P* is a deterministic matrix, p. is the element&l Poisson ratio, and E•(x) is the elemental
modulus of elasticity. The two dimensional displacement vector u(x) representing the longitudinal and
transverse displacements within each element may be expressed in terms of the nodal displacements
of the element in the form

u(,.•) =- II'(rj, r2) U' (6)

where H'(rl, r2) is the local interpolation matrix, Ut is the ratdom nodal response vector, and r, and
r2 are local coordinates over the element. Substituting equations (5) and (6) into equation (1) gives

1= I fA E'(x.) J(x) P e(x) dA" (7)2 = , .
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The strain witlhm an clement is r'l.ited to the hpl..criments, longitudinal and transverse, through the
relation

0

5 (x) = 0 u (x). (8)

0 (9

Using equation (6), equation (7) is rewritten as

e(x) = D*uU, (0)

where matrix D involves derivatives of thre interpolation matrix It. Subsutitutng equation (9) back
into equation (7) and performing a coordinate transformation, leads to

V,= U• E(r,. 1 "T(r,.• P" D'(rj,,2) IJIdr, dr2 Us, (10)

where 1J31 denotes the determinant of the Jacobian of the transformation that maps an Lrbitrsy.
element (e) onto the four.noded square with sides equal to one. The total strain energy V is obtained
by summing the contributions from all the ciements. This procedure gives

V =e I E(r.,.r2) B'T(Y%,r2) Pt BR(rj,.,) IJPJ dr, dr2 Us 11Ira.

The local representation of the response is related to the global representation through the following
transformation

U, = C" U, (12)

where C" is a rectangular permutation matrix of zeros and ones reflecting the connectivity of the
elements and the topology of the mesh. Using equation (12), the following expression for the total
energy stored in the system is obtained

V = xUr U.

2

Before evaluating the integrals in equation (11), the random process representing the modiulus of
elasticity of the plate must be replaced by a representation which somehow decouples its spatial
dependence from its random dependence. The Karhunen-Loeve expansion (Spanos and Ghanem,

1988) is used herein as an optimal such representation. Accordingly, E(rj, r7) is replaced by

AF
E(,,= Z v"XEfk('I,,,2), (14)

where Ak and fk(ri,r2 ) are, respectively, the eigenvalues and eigenfunctions associated with the
covariance function of the random process. The next stage in the computations, therefore, involves
solving the integral eigcnvalur problem associated with the covariance kernel. That is,

A., f(l'.i) = !L C(z,,YI ;z 2 . Y2) f,(zx2, y) dx2 dL•2 (15)

The kernel used in this paper is dcflcd by the equation

' ;, ;. f =) C- IX,-v,ll/, - t -bl/l) , (16)

%lherv bi and b2 arc the rorrelmdinn distauire in the s, and z2 directions rcspectivlcy.
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3 Numerical Solution of the Integral Equation

Subdividing the d,,amin A of the plate into N finite elements A*, equation (15) becomes

N

JYt

Interpolating for the value of the unknown function within an element in terms of its nodal values
results in the following expression

f. (x,y) = l'(rIr 2 ) f, (18)

where He(rt, r 2 ) is the interpolation matrix in terms of local coordinates r, and r2, and fQ is the vector
of nodal values for the unknown function associated with element (e). For this particular problem.
bilinear interpolation is used over four-noded quadrilateral element. The matrix IP'(r,,rz) is then
given by the equation

H'(r,,r 2 ) = r (1 - r)(1 - r2 ) (I + r1)(1 - r2) (19)

(I + ri)(I + ri) (1- ri)(1 + r2)

Substituting equation (18) and performing a transformation from global to local coordinates, equation
(17) becomes

A,. f.(Xslh) = y, . C( -zxkIa2, V2) H(ri,r 2 ) IJ'l dA" f: (20)

where J•J' is the Jacobian of the coordinate transformation. A system of algebraic equations is obtained
from equation (28) by requiring the corresponding error to be orthogonal to all the interpolation
functions used. That is,

CD = A B D (21)

where now the jth column of D is the jp eigenfunction calculated at the nodal points and

Aj = ý,i At (22)

Matrices C and B are obtained by assembling matrices C,, and B.! where

C I- 'Al C(x1, ,; 2, Y12) IIT(rir7) Ht(r 3,,r 2 ) dA" dAf, (23)

and
B, = f C(.r1 .Y1; ;x7,yI) llr(r,.r,) I/(ra,r2) dA" (24)

with (za, y,) and (rl, rl) denoting the global and local coordinates of a point in A' respectively. The
assembly procedure just mentioned consists of combining entries corresponding to the same node
(Akin, 1982).

4 Spectral Stochastic Finite Elements

The Karhunen-Loeve expansion for the modulus of elasticity may be substituted into equation (11)
to transform equation (13) into

=. KIWI U (25)
k-1
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The integrations involved in equation (25) may be performed either analytically or using some numer.
ical quadrature scheme. The work perforni.d by the externally applied forces is

N
V,= ' u' T (x) f(x)dfA

At

u T  ct T  
1, T (x) Q(x) dXt 

= U f . (2G)
k.1

whlere,
w IV

f C"' I(.. ) f(x) dA' (27)

Minimizing the total potential energy (V - V') with respect to U. leads to the equation

, K(U) + Y ik 1 (1) U = f. (28)

The response vector U is expanded along the basis given by the Polynomial Chaoses (Ghanem and
Spanos, 1990) as,

P
U = e, 'I,{E,)]. (29)

t.-0

Substituting equation (29) into equation (28). and requiring the error resulting from truncating the
series at the P", term to be orthogonal to the P + 1 Polynomial Chaoses [{E4}]=o results in a
system of linear algebraic equations of the form

P [M <E ,[,,1%('10>z() C. = <TM(O,1 r>, 0 =...,,' (30)

which can be solved for the coeflfcients c.

5 Numerical Results

A curved plate is shown in Figure (1). The curved side is a ninety degree arc of a circle of unit
radius. The length of the straight edges is equal to 1.25. The standard deviation of the longitudinal
displacement at node A, using two terms in the K-L expansion for the material stochasticity, is
shown in Figure (2). It is plotted against the standard deviation of the modulus of elasticity. The
results corresponding to four terms in the K-L expansion are shown in Figure (3). Note the excellent
convergence. The probability distribution functions corresponding to on* of the response variable at
node A are depicted in .Figures (4).(7). Results corresponding to two and four terms in the Narhunen.
Loeve expansion and up to third order Pnlynomial Chaos are shown.

Tihe two dimensional process representing the modulus of elasticity of the plate is simulated In
such a way as to accommodate the non-uniforin spatial distribution of the nodal points. The issue
is addressed by using the Karhunen-Loeve expansion to simulate a truly continuous random field.
To this end, the eigenvalues and eigenfunctions of the covariance kernel are computed as described
in the previous section. The random field is then simulated using equation (14) with the number
of terms equal to the number of nodes in the system. The orthogonal random variables appearing
in that equntion are ohbtained as papulnoramolom cnmpater generated uncorrelatod variates, with zero
mean and unit variance. The resulting simulated random field Is not as sensitive to the mesh size and
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Figure 2: Normalized Standard Deviatiott off Longitudinal Disp~acenient at Corner A of the Curved Plate, versus

Standafrd Deviation of th~e Modulus of Va•sticity; Two Terms in tihe K-L Expansion; Exponential CovariAnce;

I te tI ~

Figure 3: Normalized Standard Deviation of Longitudinal Displacement at Corner A of the Curved Plate, versue
Standard Deviation of the Modulus or Elasticity; Four Terme in the K-L Expansion,; Exponential Covafiance;

oe,= 10.4.

I

Figure 4: Longitudinal Displacement at the Free End of the Curved Plate; Probability Density Function
Using 30,000-Samplet MSC, and Uoing Third Order F omoueneous Chaeo; Two Terms in the K-L Expansion;

ExponentW~ Covisiance,
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Figure St Iongitudinal Displacement at the Free End of the Curved Plate; Tail of the Probability Density
Function Using 30,000-Sample MSC, and Using Third Order Homogeneous Chaos; Two Terms in the K-L
Expansion; Exponential Covariauce.

Figure Or Longitudinal Displacement at the Free End of the Curved Plate; Probability Density Function
Using 30,000-Sample MSC, and Using Third Order Homogeneous Chaos; Four Terms in the K.L Expansion;
Exponential Covariance.

.. 11 .ISv.te 40 )

Figure 7: Longitudinal Displacement at the Free End of the Curved Plate; Tail of the Probability Density
Function Using 30.000-Sample MSC, and Using Third Order Hlomogeneous Chaos; Four Terms in the K-L
Expansion; Exponential Covariance.
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"nodal point distribution as the field obtained using more conventionaI procedures. The results from
using the Monte Carlo simulation method are superimposed on the same plot as the analytical results.
Observe the good agreement between the analytical and the simulated results even for large values of
the coefficient of variation.
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Abstract

A method for the solution of differential equations with random processes
as coefficients is developed. The method relies on viewing the random aspect
of the problem as an added dimension, and on treating random variables and
processes as functions defined over that dimension. This way, a formulation for
the stochastic finite element method is developed which is a natural extension
of the deterministic finite element method. Finite element representation
along the random dimension is achieved via two spectral expansions. One of
them is used to represent the coefficients of the differential equation which
model the random material properties, the other is used to represent the
random solution process.
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1. INTRODUCTION

Although the first quantitative ideas of probability theory took form as far back
as the seventeenth century, at the gambling tables, with Pascal and Fermat, it was
not until well into this century that the body of knowledge known as probability
became a mathematical discipline. In the interim, some of the greatest scientific
minds, including Gauss, Laplace, and Poincare, as well as many others, were laying
the foundation for the theory by compiling observations and related theorems on the
chance occurrence of events. Several attempts to baptize the accumulated ideas as
a branch of mathematics were vehemently opposed by prominent mathematicians,
as lacking the rigorous foundation fit of a mathematical theory. However, the
postulation of the uncertainty principle early in this century created an urgency
for providing a sound mathematical framework for probablistic concepts. By this
time, important contributions in that direction had been made by, among others,
Poincare and Bore]. But it was with Kolmogorov, in his Foundation of the Theory
of Probability (1933), that an axiomatic foundation of the theory was presented
and that the subject matter finally gained universal acceptance as a branch of
mathematics.

The usefulness of this axiomization cannot be overestimated. Indeed, it provided
the connection between probability as a collection of observations of natural phe-
nomena and mathematical reasoning, thus providing a whole new set of perspectives
and tools with which to view and approach related problems. Specifically, as
related to the development of stochastic finite elements, the most significant aspect
of mathematical probability is the association of random variables, which are the
elementary ingredients of the theory, with functions defined over topological spaces.Once this association has been established, the well developed field of functional
analysis could be used in analyzing and operating on these random variables. This
connection with functional analysis already carries the ingredients for a unification
of stochastic finite elements with deterministic finite elements. Indeed, a major part
of the modern development in the theory of finite elements draws intimately from
functional analysis, so that at a certain level of abstraction, both the deterministic
and the stochastic finite element methods have the same theoretical foundation.
Once this unification is established, the deterministic finite element method can be
viewed as a special digression of the stochastic finite element method, whereby
Borne of the functional spaces involved have a particular structure. Unlike the
deterministic case, however, where functions are usually defined with respect to
& Lebesgue measure, when dealing with random entities a more general concept of
.measure is called for. Whereas a Lebesgue measure coincides, usually, with the more
intuitive notion of differential volume, probability measures are abstractions of such
volumes. The practical effect of this difference is that whereas in the deterministic
case a discretization of a function with respect to its natural measure induces a
discretization of the physical space with respect to this same measure, and thus
induces a finite element mesh, a similar discretization in the probabilistic case, with
respect to the probability measure, does not carry a parallel physical consequence.
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Although at first this may be seem a weak point in the development of a finite.
element theory, it is quickly reminded that recent efforts in deterministic fiiita,
elements have been advocating similar abstract discretizations, the p-method Aad
various spectral methods being cases in point. In this respect, the spectral theory 4
the stochastic finite element method, as developed in the sequel, can be viewed as &
natural extension of these developments to the case of random operators. In the next
section, a coherent mathematical framework is presented which is a natural setting
for the analysis of random operator equations. Next, the theory of representation of
stochastic processes is expanded with special emphasis on two spectral expansions,,
namely the Karhunen-Loeve and the Polynomial Chaos expansions. These are then,
used in the following section to develop the stochastic finite element method.

2. THE MATHEMATICAL MODEL

The class of problems dealt with in this study is not of the conventional engineering
kind in that it involves concepts of a rather abstract and mathematical nature. It is
both necessary and instructive to introduce at this point the mathematical concepts
which are used in the sequel.

The Hilbert space of functions (Oden, 1979) defined over a domain D, with values
on the real line R, is denoted by H. Let (f), it, P) denote a probability space. By
that is meant that ft is a space of elementary events, IP is the a-field generated
by fl, or loosely speaking, the space consisting of the various combinations of the
elements of 0l, and finally, P is the probability measure defined on 'P. Let x be an
element of D and 0 be an element of fl. Then, the space of functions mapping f,
onto the real line is denoted by E. Each map fl -- R defines a random variable.

The inner products over H and over 0 are defined using the Lebesgue measure
and the probability measure, respectively. That is, for any two elements hi(x) and
hj(x) in H, their inner product (hi(x) , hi(x) ) is defined as

(h,(x), h,(x)) = ko h,(x)h,(x)dx. (1)

The domain D represents the physical space over which the problem is defined.
Similarly, given any two elements a(9) and 6(0) in G, their inner product is defined
as

S(a(G),f(o)) = J (9O)13(O)dP (2)

where dP is a probability measure. Under very general conditions, the integral
in equation (2) is equivalent to the average of the integrand with respect to the
probability measure dP, so that

(c,(G),,8(o)) = <(3)

where <.> denotes the operation of mathematical expectation. Any two elements
of the Hilbert spaces defined above Pre said to be orthogonal if their inner product
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yvishes. A random process may then be described as a function defined on the

product space D x fl. Viewed from this perspective a random process can be treated

sa £ curve in either of H or 8.

The physical model under consideration involves a medium whose properties

exhibit random spatial fluctuations and which is subjected to a random external
excitation. The mathematical representation of this problem involves an operator

equation
A(x, 0) [u(x, 0)] = f(x, 9) (4)

where A(x, 0)[.] is some operator defined on H x E. In other words, A is a differential
operator with coefficients exhibiting random fluctuations with respect to one or more
of the independent variables. The aim then is to solve for the response u(x,a) as
a function of both its arguments. With no loss of generality, A i assumed to be a
differential operator whose random coefficients are restricted L.. eing second order
random processes. This is not a severe restriction for practical problems, since most
physically measurable processes are of the second order type. Then, each one of
these coefficients a(,(x, 0) can be decomposed into a purely deterministic component
and a purely random component in the form

ak(x,0) = ak(x) + Ok(X,O) (5)

where ak(x) is equal to the mathematical expectation of the process ak(x,O), and
Ok(x,#) is a zero-mean random process, having the same covariance function as the
process at(x,O). Equation (4) can then be written as

(L(x) + n(x,9)) ,u(x,9)] = f(x,B) , (6)

where L(x)[.] is a deterministic differential operator and II(x,8)[.] is a differential
operator whose coefficients are zero-mean random processes. Before a solution to
equation (6) is sought, it is essential to clarify what is meant by such a solution.

It will prove instructive to start with the deterministic finite element method
and see how the related concepts can be generalized. A finite element solution to a

deterministic problem governed by a certain differential equation consists basically
of computing the value of the dependent variables on a discrete mesh induced in the
sPace spanned by the independent variables. This is probably the most widespread
interpretation of a finite element solution; it has been crucial in disseminating the
method as a powerful analysis and design tool into engineering practice. An alterna-
tive viewpoint which will prove to be more amenable to the required generalizations,
is that a solution to a finite element pro lem consists in evaluating the value of the
coeffcients in the expansion of the solution along a certain basis in an appropriate

functional space. The finite element procedure will consist in choosing a suitable
basis and then computing optimal values of the coefficients with respect to this basis.
From this perspective, the finite element mesh is naturally induced with specific
choices of these bases. With other choices, however, the expansion coefficients do
not necessarily carry an obvious physical interpretation. In the stochastic case,
One of the independent variables spans the space of elementary events, which can
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only be discretized with respect to a probability measure, the result lacking
intuitive appeal. In this case, the appeal of the second interpretation of a fiA
element solution is obvious. The problem then becomes one of identifying a suitW4
basis in the-space H x E over which the solution is defined, and of determi*nn
a meaningful optimality criterion for computing the coefficients in the associat4
expansion. Obviously, the basis functions in this case will be random. By simulatiiq
realizations of these functions, corresponding realizations of the solution process •a
be obtained. Alternatively, by defining a suitable inner product over the space q
random variables, various statistics or, equivalently, norms of the solution proce*
may be evaluated.

3. REPRESENTATION OF STOCHASTIC PROCESSES

Similarly to the case of the deterministic finite element method, whereby functionu
are represented by a denumerable set of parameters consisting of the values of the
function and its derivatives at the nodal points, the problem encountered in the
stochastic case is that of representing a random process by a denumerable set d
random variables, thereby discretizing the process.

In the deterministic case discretization of the domain has a physical appeal
The domain in the stochastic case does not, however, have a physical meaning that
permits a sensible discretization. In this context the functional analysis foundation
of the finite element method becomes useful as it can be extended to deal witi
random functions. Two of the most useful expansions for random processes are the

Karhunen-Loeve expansion, and the Polynomial Chaos expansion. The first require
knowledge of the covariance structure of the process under consideration, while the
second one is more general. The difference between these two expansions can be

loosely compared to that between a modal expansion and a Fourier-type expansion
of a system response. Although the former has better convergence properties, the

latter is more general and does not require knowledge of the properties of the system.
These two expansions are discussed next.

3.1 Karhunen-Loeve Expansion

The major conceptual difficulty from the viewpoint of the class of problems coO'
sidered herein, involves the treatment of functions defined on these abstract space,
namely random variables defined on the a-field of random events. The most widely
used method, the Monte Carlo simulation, consists of sampling these functions .
randomly chosen elements of this o-field, in a random, collocation-like, scbene-
Obviously, a quite large number of points must be sampled if a good approxirnatiO2
is to be achieved. Alternatively, these functions could be expanded in a Fourier-tylP"
series as

W(XG9) F_ FAwe f.(X), 7



where {•.(#)} is a set of random variables to be determined, A, is some constant,

und {f,(x)} is an orthonormal set of deterministic functions. This is exactly what
the Karhunen-Loeve expansion achieves. The expansion was derived independently
by a number of investigators (Karhunea, 1947; Loeve, 1948; Kac and Siegert, 1947).

Let w(x,O) be a random process, function of the position vector x defined over
the domain D, with 8 belonging to the space of random events M'. Let ti(x)
denote the expected value of w(x, 0) over all possible realizations of the process, and
C(xl,xl) denote its covariance function. By definition of the covariance function, it
is bounded, symmetric and positive definite. Thus, it has the spectral decomposition
(Courant and Hilbert, 1953)

C(x,,x 2) = ¾ f,.(x,) f.(x2) (8)
0=.1

where A. and f.(x) are the eigenvalue and the normalized eigenvector of the covari-
ance kernel, respectively. That is, they are the solution to the integral equation

fD C(x 1 ,,(x) dx, 1= , f.(x2) (9)

Due to the symmetry and the positive definiteness of the covariance kernel (Loeve,
1977), its eigenfunctions are orthogonal and form a complete set. They have further
been normalized so that the following equation holds,

D f/.(x) f,(x) dx = 6,. , (10)

There 6,,, is the Kronecker delta. Clearly, w(x,O) can be written as

W(x,0) = lb(x) + o(x,0), (11)

whe. o(x,O) is a process with zero mean and covariance function C(x1 ,x2 ). The

Process O(x,9) can be expi..ded in terms of the eigenfunctions f. (x) as

cS(x, ) = E ý-.(a) /A-. f.(x).- (12)

Second order properties of the random variables 4, can be determined by multiplying
both sides of equation (12) by &(x2 , 0) and taking the expectation on both sides.
Specifically, it is found that

C(x1 ,x 2) = <o(xz,e) a(xý,A)> (13)

= ~ <-(0) W.,O) > V¾AfA f,(xI) f.,(X.I)
awl M0=1
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Titen, multiplying both sides of equation (14) by fk(x2), integrating over the domai•
D, and making use of the orthogonality of the eigenfunctions, yields

C(x,,X2) fk(x2) dx 2 = fkk (x1 )

<-(9~ ) WO) > jýAAk Xi).-
n,=1

Multiplying once more by fi(xi) and integrating over D, gives

-Ak fk) (xI) ff (XI) dx1 = EO E<.~(9) k(O) > VA1 6ý, (14J

Then, using equation (10) leads to

Ak 41 = V'• 7 <k(O) ý,(O) > (6)

Equation (16) can be rearranged to give

<,(G) 6(0) > = 41, (17

Thus, the random process w(x,0) can be written as

w(x,0) = tD(x) + WO) ,)" f,,(x) (18)

where,wh r ,< '(8) > = 0 , < -.(0) W 9(O> = 6n.., (9

and An, fn(x) are solution to equation (9). Truncating the serie- in equation (18)
at the MWh term, gives

M

W(x,0) = ,D(x) + _ W,() VA, f,,(x). (26Y)
n=Q

An explicit expression for 4,(0) can oe obtained by multiplying equation (12) bf
.f.(x) and integrating over the domain D. That is,

S!a(x, 0)/f.(x) ,dx (21!•4,(0) = •k~,~fxx

It is well known from functional analysis that the steeper a bilinear form dec3Y%
to zero as a function of one of its arguments, the more terms a-t needed in it;
spectral representation in order to reach a preset accuracy. Noting that the Fourit'
transform operator is a spectral representation, it may be concluded that the fast'



the autocorrelation function tends to zero, the broader is the corresponding spectral

density, and the greater the number of requisite terms to represent the underlying

random process by the Karhunen-Loeve expansion.
For the special case of a random process possessing a rational spectrum, the

integral eigenvalue problem can be replaced by an equivalent differential equation
that is easier to solve (Van Trees, 1968). In the same context, it is reminded that a

necessary and sufficient condition for a process to have a finite dimensional Markov
realization is that its spectrum be rational (Kree and Soize, 1986). Further, note
that analytical solutions for the integral equation (10) are obtainable for some quite
important and practical forms of the kernel C(xl,xz) (Juncosa, 1945; Sleplan and
Pollak, 1961; Van Trees, 1968). In the general case, however, the integral equation
must be solved numerically. Various techniques are available to this end (Chanem
and Spanos, 1991).

3.2 Homogeneous Chaos

It is clear from the preceding discussion that the implementation of the Karhunen-
Loeve expansion requires knowledge of the covariance function of the process being
expanded. As far as the system under consideration is concerned, this implies that
the expansion can be used for the random coefficients in the operator equation.
However, it cannot be implemented for the solution process, since its covariance
function and therefore the corresponding eigenfunctions are not known. An alterna-
tive expansion is clearly needed which circumvents this problem. Such an expansion
could involve a basis of known random functions with deterministic coefficients to be
found by minimizing some norm of the error resulting from a finite representation.
This should be construed as similar to the Fourier series solution of deterministic
differential equations, whereby the series coefficients are determined so as to satisfy
some optimality criterion. To clarify this important idea further, a general functional
form of the solution process is written as

U = h I[,,(0),z] (22)
*here h[.J is a nonlinear functional of its arguments. In equation (22), the random
processes involved have all been replaced by their corresponding Karhunen-Loeve
representations. It is clear now that what is required is a nonlinear expansion
of /(.H in terms of the set of random variables ,(O). If the processes defining
the Operator are Gaussian, this set is a sampled derivative of the Wiener process
(Doob, 1953). In this case, equation (22) involves functionals of the Brownian
"motion. This is exactly what the concept of Homogeneous Chaos provides. This
concept was first introduced by Wiener (1938) and consists of an extension of
Volterra's work on the generalization of Taylor series to functionais ( Volterra,
1913 ). Wiener's contributions were the result of his investigations of nonlinear
functionals of the Brownian motion. Based on Wiener's ideas, Cameron and Martin
01947) constructed an orthogonal basis for nonlinear functionals in terms of Fourier-ierrnite functionals.



3.2.1 Definitions and Properties

Let {•,(O)}, be a set of orthonormal Gaussian random variables. Consider t6e
space 17, of all polynomials in {•,(G)1•, of degree not exceeding p. Let F, represent
the set of all polynomials in r,' orthogonal to Ft,. Finally, let P, be the space
spanned by r.. Then, the subspace t", of 9 is called the p" Homogeneous Chaos,
and rp is called the Polynomial Chaos of order p.

Based on the above definitions, the Polynomial Chaoses of any order p consist
of all orthogonal polynomials of order p involving any combination of the random
variables { It is clear, then, that the number of Polynomial Chaoses of
order p, which involve a specific random variable out of the set {',( )1,-- increaso
with p. This fact plays an important role in connection with the finite dimensional
Polynomial Chaoses to be introduced in the sequel. Furthermore, since random
variables are themselves functions, it becomes clear that Polynomial Chaoses am
functions of functions and are therefore functionals.

The set of Polynomial Chaoses is a linear subspace of the space of square-
integrable random variables 0, and is a ring with respect to the functional mul-
tiplication rpl'(w) = F,(w)Fn(w). In this context, square integrability must be
construed to be with respect to the probability measure defining the random vari-
ables. Denoting the Hilbert space spanned by the set {(,(O)) by 0(C), the resulting
ring is denoted by 4 em, and is called the ring of functions generated by 0(U).
Then, it can be shown that under some general conditions, the ring 'e(() is dense
in the space E (Kakutani, 1961). This means that any square-integrable random
function (fl -. R) can be approximated as closely as desired by elements from le([l-
Thus, any element p(O) from the space e admits the following representation,

•(e)= • ]C ] a;:;;• r,&(o)... ,&()), (23)
p>0 n"+...n,=p Pi.

where F,(.) is the Polynomial Chaos of order p. The superscript n, refers to the
number of occurrences of (,,(O) in the argument list for F,(.). Also, the double
subscript provides for the possibility of repeated arguments in the argument list of
the Polynomial Chaoses, thus preserving the generality of the representation given
by equation (23). Briefly stated, the Polynomial Chaos appearing in equation (23)
involves r distinct random variables out of the set {•(6)}•1, with the kIA random
variable .&(O) having multiplicity nk, and such that the total number of random
variables involved is equal to the order p of the Polynomial Chaos. The Polynomial
Chaoses of any order will be assumed to be symmetric with respect to their argu-
ments. Such a symmetrization is always possible. Indeed, a symmetric polynomial
can be obtained from a non-symmetric one by taking the average of the polynomial
over all permutations of its arguments. The form of the coefficients appearing it
equation (23) can then be simplified, resulting in the following expanded expression
for the representation of random variables,

P = F( + _ aiF 1(f.,(O)) (24)
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sg--I t•=i

+ O +..,

ll=4-1 i3=1 4 -1

where I,(.) are successive Polynomial Chaoses of their arguments, the expansion
being convergent in the mean-square sense. The upper limits on the summations
in equation (24) reflect the symmetry of the Polynomial Chaoses with respect to
their arguments, as discussed above. The Polynomial Chaoses of order greater than
one have mean zero. Polynomials of different order are orthogonal to each other; so
ate same order polynomials with different argument list. At times in the ensuing
developments, it will prove notationally expedient to rewrite equation (24) in the
form

I(GM = VA, (M9)], (25)
J=O

where there is a one-to-one correspondence between the functionals fl.] and [f.),
and also between the coefficients ai and a,,.., appearing in equation (24). Implicit
in equation (24) is the assumption that the expansion (24) is carried out in the order
indicated by that equation. In other words, the contribution of polynomials of lower
order is accounted for first.

Throughout the previous theoretical development, the symbol 0 has been used
to emphasize the random character of the quantities involved. It will be deleted
in the ensuing development whenever the random nature of a certain quantity is
obvious from the context.

As defined above, each Polynomial Chaos is a function of the infinite set {(, ,
and is therefore an infinite dimensional polynomial. In a computational setting,
however, this infinite set has to be replaced by a finite one. In view of that, it
Seems logical to introduce the concept of a finite dimensional Polynomial Chaos.
Specifically, the n-dimensional Polynomial Chaos of order p is the subset of the
Polynomial Chaos of order p, as defined above, which is a function of only n of the
Uncorrelated random variables (,. As n -- oo, the Polynomial Chaos as defined
Previously is recovered. Obviously, the convergence properties of a representation
based on the n-dimensional Polynomial Chaoses depend on n as well as on the
choice of the subset , out of the infinite set. In the ensuing analysis, this
choice will be based on the Karhunen-Loeve expansion of an appropriate random
Process. Since the finite dimensional Polynomial Chaos is a subset of the (infinite-
dimensional) Polynomial Chaos, the same symbol will be used for both, with the
dimension being specified. Note that for this case, the infinite upper limit on the
Summations in equation (24) is replaced by a number equal to the dimension of the
Polynomials involved. For clarity, the two-dimensional counterpart of equation (24)
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is rewritten, in a fully expanded form, as

,um)= ao ro + at r,(ý,) + all (26)

+ all r12(6,6) + a12r 2(6,W,) + a2 r , (.:,, 2)
+ a,,, r3 (6,6,6,) + a,,, r 3 (6,6 1,4 1 ) + a,, ,
+ 722 rw(2,,•) ....

In view of this last equation, it becomes clear that, except for a different indexin&
convention, the functionals %P[.1 and r[.1 are identical. In this regard, equation (26)
can be recast in terms of 4I1,1] as follows

P(O) = hoPo + a 2'* 2 + a3% 3 + 6-1'P4 + as43

+ a 64'. + a,'PT + aepa + ag2o + ... , (2?)

from which the correspondence between *1.1 and F[.] is evident. For example, the
term a~llr 3 ((2 ,6,,) of equation (26) is identified with the term d7'I, of equation
(27).

3.2.2 Construction of the Polynomial Chaos

A direct approach Lo construct the successive Polynomial Chaoses is to start with
the set of homogeneous polynomials in {f,(9)} and to proceed, through a sequence
of crthogonalization procedures. The zeroth order polynomial is a constant and it
can be chosen to be 1. That is

ro .(28)

The first order polynomial has to be chosen so that it is orthogonal to all zeroth
order polynomials. In this context, orthogonality is understood to be with respect to
the inner-product defined by equation (2). Since the set ({.) consists of zero-me, e
elements, the orthogonality condition implies

r,(&) = (. (29)

The second order Polynomial Chaos consists of second order polynomials in {4,) that
are orthogonal to both constants and first order polynomials. Formally, a second
order polynomial can be written as

r2 (.,,, = 0o + a,,(., + 4,2f,, + o,,,, ,,, (30)

where the constants are so chosen as to satisfy the orthogonality conditions. The
second of these requires th.)

< r 2 ( , , , ,> 0 o . (3 1)

This leads to the following equation

a,,ki + a,, 0 . (32)
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Allowing '3 to be equal to i, and i2 successively, permits the evaluation of the

coefficients aj, and a,, as
a,, = 0, a, = 0. (33)

The first orthogonality condition yields

a 0  + aj,jbj,6 , 0 0 (34)

Equation (34) can 1-e normalized by requiring that

a,,,, = I. (35)

This leads to
ao = - 6,,, . (36)

Thus, the second Polynomial Chaos can be expressed as

(, = - 6,, •(37)

In a similar manner, the third order Polynomial Chaos has the general form

=a, ,,) 0 + ai3 (, + agil(, + 6, g.. + aj~ ., j(.,

+ o,,,,0j ,,4 + ai-,i3& ,•i + ai,,•,,i,G,)4 ,, (38)

with conditions of being orthogonal to all constants, first order polynomials, and

second order polynomials. The first of these conditions implies that

<= 0. (39)

That is,
(O + o il,, i6 li + aiti,6, + a i3,j,6I34 0 . (40)

The second condition implies that
< ( (.> = .0 (41)

which leads to

a,,6,•, + .a4.. + ai,•,6
4 + all,,, < 4i,2 ý, ý >• (42)

The last orthogonality condition is equivalent to

< r.a,,ý,,4 , )(.(> = o , (43)
which gives

ao 6,+ aj1 i<< t.j,$ =0. (44+
+ aii. <(i.6.6t~4 66> 0*o (44)
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The above equations can be normalized by requiring that

a,,,,,) I. (45)

Then equation (42) becomes

a,,6,,, + a,6i,,, + a,3,6,., + <,,(,2 (,1 ,.> 0 (46)

Due to the Gaussian property of the set {,(), the following equation holds

< 3 C1 1,6.>= 6 102 61310 + k,,3 648, + bilif,6.,,) (47)

Substituting for the expectations in equations (46) and (44) yields

a,,6,,,, + ai,6i21, + aqbi"',

+ .1.,6,,.i + 6.'s3 6.,2, + 6,,,,6.,•. = 0 (48)

and

a0 bi, is + aj,,2 6,,,,6,,,& 4 6l , ,6,,,. + 6,,,.6,,4I

+ ai [ ,i , ,,, + 6'14 6'3i$ -+.6,6,, I
+ a ,213 6 •.1,6403 + 6,,4 613•, + 6,,,34604 ] = 0. (49)

Substituting for ao from equation (40), equation (49) can be rewritten as

OliI 7 [IA7 6,,,,6.,,,O I + ai03, [ Sil,lb463,1 + 44S%1, 6 4)I

+,,,,, [ 644613i* + 6il,36 I = 0. (50)

From equation (50), the coefficients ai,, aii, and aj,j, can be evaluated as

a,,,, = 0

ai 3= 0(5
ai)13 = 0.

Using equation (49) again, it is found that

ao = 0. (52)

Equation (48) can be rewritten as

6,, , (ai, + 64,4) + 6,i. (ai, + 6•,,)) + 61,, , (a,, + 6i,,3) = 0, (53)



from which the coefficienlts a,,, a,,, and al are found to be,

ail = -6ir

a,, = -6,,3 (54)

a =3 =- -•I6,,

The third order Polynomial Chaos can then be written as

= G, G, ý4 - C, 6,,,,; - f-7 6,,, 6.3.2ii (55)

After laborious algebraic manipulations, the fourth order Polynomial Chaos can be

expressed as

r, = , ,, 4,, , (56)
- 4,, 4. 6•,,, - 4, 4, 6,,,, - 4•, 4, 6,,,,

f1 C? 4 6i~i -i &4 bili C3. - 46, 6'1'2
+I billbi.i + Silill6,,., + bi,.,&,.,

It is readily seen that, in general, the n'h order Polynomial Chaos can be written as

n even

r,•,.. ,)= (57)

*e., v{; 1. .~..., k=I 1=,+4I

n odd

where vr(.) denotes a permutation of its arguments, and the summation is over all

such permutations such that the sets {4j,...,-,} is modified by the permutation.
Note that the Polynomial Chaoses as obtained in equations (28), (29), (37), (55)

and (56) are orthogonal with respect to the Gaussian probability measure, which
make' them identical with the corresponding multidimensional Hermite polynomials

!Grad, 1949). These polynomials have been used extensively in relation to problems
10 turbulence theory (Imamura et.al, 1965a-b). This equivalence is implied by the
Orthogonality of the Polynomial Chaoses with respect to the inner product defined

by equation (2) where dP is the Gaussian measure e- f dA, where 4 denotes the
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vector of n random variables {(,, )"=, This nTii.sure is exactly the weighing function
with respect to which the llermite polynomiials are orthogonal in the L2 sense (Oden,
1979). This fact suggests another mnethod for constructing the Polynomial Chaose3,
namely from .the generating function of the liermite polynomials. Specifically, the
Polynomial Chaos of order n can be obtained as

= (-1)""8" (58)r .. ,M . . . . . . • , ) ( I "0' , . . .8 )

The first two terms in equation (25) represent the Gaussian component of the
function p(0). Therefore, for a Gaussian process, this expansion reduces to a single
summation, the coefficients a,, being the coefficients in the Karhunen-Loeve expan-
sion of the process. Note that equation (25) is a convergent series representation for
the functional operator h[.1 appearing in equation (23). For a given non-Gaussian
process defined by its probability distribution function, a representation in the form
given by equation (25) can be obtained by projecting the process on the successive
Homogeneous Chaoses. This can be achieved by using the inner product defined
by equation (2) to determine the requisite coefflicients. This concept has been
successfully applied in devising cfficient variance reduction techniques to be coupled
with the Monte Carlo simulation method (Chorin, 1971; Maltz and Hitzl, 1979).

4. PROJECTION ON THE HOMOGENEOUS CHAOS

In this section the Karhunen-Loeve expansion and the Polynomial Chaos expansion
presented earlier are implemented into a stochastic finite element method which
features a number of similarities with the deterministic finite element method.
Specifically, the geometric interpretation of the finite element method as a projection
in function space is preserved.

Equation (6) constitute the starting point. Assuming that

n(x,w)[.] = a,(x,O) R(x)(.], (59)

and expanding o(x,O) in a Karhunen-Loeve series gives

L(x) + a •, (x) R(x) [u(X,,0) = f(x,9). (60)

Assuming, without loss of generality, that ii(x, 0) is a second order process, it lends
itself to a Karhunen-Loeve expansion of the form

L
U(x,0) = ej x,(0) b2(x), (61)

j=1

where
ID C.. (xi , x2) b2(x2) dx 2 = e, b,(xi), (62)
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and V,(O) = - ,u(x,O) b,(x) dx (63)

Obviously, the coariance function C,,(x1 , x 2 ) of the response process is niot known

at this stage. Thius, c, and bj(x) are also not known. Further, u(x,0), not being
a Gaussian process, the set Xj( 0 ) is not a Gaussian vector. Therefore, equation

(61) is of little use in its present form. Relying on the discussion concerning the
Homogeneous Chaos, the second order random variables ) j(0) can be represented
by the mean-square convergent expansion

(0) , + ,

W0 It 00 11 11

00 - I 27~ 1 1 • ! 1=
+ 17M ý1 ý-("

, + .(64)

where ail..-,, are deterministic constants independent of 0 and 'P( •,... ,

is the p"h order Homogeneous Chaos. Equation (64) is truncated after the Pt"
polynomial and is rewritten for convenience, as discussed in equation (27), in the
following form,

P
x)0)= Z z,,•' ''{{1 (65)

=0

where -.') and 'l,{{4}j are identical to a' and 1,.,,,), respectively. Inz, ~~~~~~~~~I...d'. (,...(,, epcivl.I

equation (65), P denotes the total number of Polynomial Chaoses used in the
expansion, excluding the zeroth order term. Given the number Af of terms used
in the I(arhunen-Loeve expansion, and the order p of Hlomogeneous Chaos used, P
may be determined by the equation

P =l+ .I (M + r). (66)
j=1 r0O

Substituting equation (65) for xj(O), equation (61) becomes

L P

U(x,o) = F F X-') {,1(ý,4j c'(x) , (67)
)=I i=O

Where

cA(x) = ej b•(x) • (6S)

Changing the order of summation in equation (67) gives

P L

.=0 j=1
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P

Z 'J',I{,HI d,(x) (69)
-=0

Whcre,
L

d,(x) = x,'t) C,(x) (70)
k=1I

Substituting equttation (69) for u(x, 0), equation (60) becomes

LI.x) + a.x ~) dZx f (X) (71
*1=I = I L=o

where reference to the parameter 0 was eliminated for notational simplicity.
The response u(x,O) can be completely determined once the functions di(x) are
known. In terms of the eigenfunctions b2(x) of the covariance function of u(x,O),
d,(x) can be expressed as

L

d,(x) x , z('1 ej b,(x)

- • , b,(x) (72)
2=1

Equation (71) may be written in an alternative form
P P Mf

Ej [f,)] L(x) [',I(x)j + E E 4,[1, R(x) [d,(x)l = f(x). (73)
J=O 3.

0 
1=1

This form of the equation shows that d2(x) belongs to the intersection of the domains
of R(x)[.] and L(x)[.]. Then, following the standard deterministic finite element
method, the function d,(x) may be expanded in an appropriate function space as

Nd,(x) =E• dk, gk(x). (74)
k=!

Then, equation (73) becomes

P N
SE d+, +j[{C,}l L(x) [gk(x)] ()x(

J=O k=l

P M I

+ E _ , 4, (x) b)(x)9 f(,)•
j =O i=- k=1

Equation (75) may be rearranged to give

P M M

d [6) L(x) L+(x)]
J=O k=1 "A4
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Multiplying both sides of equation (76) by gi(x) and integrating throughout yields

P Af r
E Z d~ i,, {()J L(x) [ffk(X)j gi(x) dxj=0 k=1

+ R jgj1fo gt Lk (x) dx

= f f(x) gi(x) dx, I = 1 N. (77)

Setting

Lki = JD L(x) [gk(x)] g,(x) dx (78)

R.kg = JD R(x) [gk(x)J gi(x) a,(x) dx (79)

f= f(x) gl(x)dx (80)

equation (77) becomes

E ~ E Yjfj Lk + &WZkJ=O k=--- I I=

= ft (,=)

Note that the index j spans the number of Polynomial Chaoses used, while the
index k spans the number of basis vectors used in C'. Multiplying equation (81)
by , averaging throughout and noting that

<T [{G}1 q ,.{{ )}> = b"., •• { } > (82)

one can derive

N P N Af
E <'P'[1{(}J]>Lkidkn, + E E dk, <,
k=1 I=Ok=lI

= <fi l,.{•}j> I = 1,... ,N, m = 1 .. ,P (83)
Introducing

ci - <i I[{4j j> (84)
and assuming, without loss of generality, that the Polynomial Chaoses have been
normalized, equation (83) becomes

N P N Af

Z Lk, 4,,. + 1: 4, Zk F R,k1 =i <61 '1'f(G)J>
k=1 ,=O k=1 i=1

I = l,....N, m = 1...,P. (85)
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For a large umiber of index combinations the coefficients r,,,,, are identically zero.
Equation (S4) was implemented using the symbolic manipulation program MAC.
SYMA (1986). Forming equation (83) for all P values of in, produces a set of N xP
algebraic equations of the form

[G + RId = h, (86)

where G and R are block matrices of dimension N x P. Their mj" blocks am
N-dimensional square matrices given by the equations

G", = 6M. L, (81)

and
R -) = c,,, R ,. (98)iAl

In equations (S7) and (88), L and Rj denote N-dimensional square matrices whose
ki"' element is given by equations (78) and (79), respectively. In equation (86), h
signifies the N x AM vector whose ni" block is given by the equation

h, = <f 4'.,{411> (89)

The N-dimensional vectors d,, can be obtained as the subvectors of the solution
to the deterministic algebraic problem given by equation (SG). Once these coeffi-
cients are obtained, back substituting into equation (69) yields an expression of the
response process in terms of the Polynomial Chaoses of the form

Pu = E d, 1{,}1G{l. (90)
J=O

Based on equation (90), realizations of the random response vector can be computed
from realizations of the random variables {4,). Also, statistical moments of the
random response vector can be evaluated using the inner product defined in equation
(2).

5. Numerical Examples

The preceding development of the stochastic finite element method was applied
to a number of problems from engineering mechanics. The first step in the solution
of any of these problems was the solution of the eigenvalue problem associated with
the Karhunen-Loeve expansion. Following that, the coefficients in the Polynomial
Chaos expansion for the solution process were computed. Finally, various statistics,
as well as the probability distribution of the solution process were numerically
evaluated. Figure (1) shows a thin plate whose modulus of elasticity is assumed to be
a two-dimensional random process. The plate is analyzed using the stochastic finite
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7• L.-I.

SLy I

Figure 1: Plate with Random Rigidity; Exponential Covariance Model.

element formulation described above. Figure (2) compares some of the coefficients

in equation (90) for various levels of approximation; note the excellent convergence.

Figure (3) shows the variation of the standard deviation of the response against the

standard deviation of the material property again for various levels of approximation.

Finally, figure (4) shows the probability distribution of the response variable at the

free corner of the plate.

6. Conclusions

A method 'or the solution of differential equations with random orocesses as co-

efficients was discussed. The method relies on viewing the raiido.n aspect of the
problem as an added dimension, and on treating random variables and !.,ro-esses

as functions defined over that dimension. In this manner, a formulation for the

stochastic finite element method was derived which could be construed as a natural
extension of the deterministic finite element method. Finite element representation

along the random dimension was achieved via two spectral expa isions. One of them

was used to represent the coefficients of the differentiai equation which model the
random material properties, the othec was used to represent the random solution

process. The new concepts were implemented using a number of computational

models for simple engineering systems. The convergence of the discussed approx-
imations was demonstrated numerically. Probability distribution functions of the
response variables were obtained.

The present formulation can be viewed as a definite step towards a unification

of various finite element techniques. Indeed it consists of generalizing the concepts

of finite element approximation to abstract spaces, of which the usual euclidi•an

Space is a special case. The deterministic case can then be regarded as a digress.on
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0.433; ExpolientiAl Cova~iance; Polynomial Chaos Solution



1. 0.k' I h-' 11

p0

81

S ...... ~~ |lIa C .hi , I h .,t,.4,# ,m"• Ch

S- - -- 2..,• (1..,r I llm,~lPm Ch..

00 05 10 Ij 20 2.5 30

OISPLAMCrMEN,-
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Probability Density Function Using 30.000-Sample MSC, and Using Third Order
Hlomogeneous Chaos; Four Terms in the K-I, Expansion; Exponential Covariance.

of this formalism to the particular instance when the space of elementary events
consists of a single elemnent, and where the probability density function induced on
the associated tv-algebra is the uniform distribution.
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3) Pseudo - Simulation Method for Stochastic Problems

B.A. Zeldin', P.D. Spaaos2

Abstract
A new numerical method for problems of stochastic mechanics and othe areas involving A small

number of random parameters, is presented. it is analogous to the Monte-Carlo simulation method and
quite more efficient. As an exaample. the eigerivalue problem of*a clamped-dlamped beam with random
rigidity is considered.

Key words: Mcaite-Cajo method. Finite Element method, Finite Differesice method. partition.
sample space. eigenvalue problem. mean value, standard deviation.

introduction
The Monte-Carlo simulations method has been widely usied in the area of stochastic mechanics and

coiers fields. primauily becaus of its versatility. This method treaits a stochastic problem as an ensemble
of deter inistic ame. After solving a number of dwetermiustic problems. statistical anaslysis is performed
to deduce the necessairy paramezters characterizing the raindom naumre of the solution. Often this method
is fte only option available to solve complicated stochastic problems. However. indiscrnminate use of
the method can not be advocated due to its considerable computational cost. In this paper a new numner-
scaJ tmethod for stochastic problems is presented. In essence, it is a Monte-Carlo simulation method uu-
huing at limited number of randomn variables.

Formulation
Consider a problem govemned by the equation

L (4)Iu

where -( *.)is a random vector, L (g) is a mathematical operator describing the perfor-
manice of this system which depends on ý. Further. f (ý) depends on the same paramet~er set and
describes; the load. The number M is assumed to be small, and 4w~.. ame statistically independent
random variables.

Solving equation (1) is equivatlent to finding some function u - u (;) which satisfies this aqua-
tion, That is. for every realization g -

4 ,~ .~ of the random vector 9 thereexists adetermitus-
ticfunction u (4) whtich satisfies the equation (1).

Consider tle space Rm of 4,x 4.x...4m as the sample spaceCIThisisspace:can be divided into N
subdonsatos fli, im1 ....N having the shape of M-dimensional disjoint rectangles with prescribed proba-
biity mass. Next introduce the set of functions tp,. i= I .N such that

1. f1  § (2)(1

0. otherwise
Clearly, stince (p 4 and ro 4 have disjoint support. unless i 0j,

q 4 ,()p ()p-4 4- fij 3

whiere P~ ( ste probability density function of 4. and q (4) is an arbitrary ranidomn vanable. This

meuV't':~J is orthogonal with arbitrary weight basis for the class of random variables
whilch are constant for eery 3..

1. Research Assistant, Civ.Eng., Rice Uni versity P.O.Box 1892. Houston, Texas 77251.
2. L B. Ryon Chair in Eng.. Rice Universitry. PO Box 1892. Houston. Texas 7725 1.
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The solution of equation (1) can be approximated by the series
N

#(4)

where u (i ) is assumed to be an adequately smooth function of t. Next. tle scalar pr.duct of two lan-
dorm variables a and b can be introduced by the equation

E abl - (a. b). (5)

Then. the solution given by equation (4) can be constructed as a projection of the exact Solution into the
space Sp { (() •o I. Thus, the following sequence of equauons can be wrten

N( L ( 4 ) C i ', P i (o .9 •) -i ( ) V O ,(k ) -V i

which, because of equations (3) and (), leads to
E (L (4_) cp, (4) 1 - E Uf(4) 9, (t.). I

This sequence of detenruustic equations can be solved to determne ihe solutions c, Upon detenrnsung

ci. tft statistical propeties of the solution can be estimated by relying on equaion (4). Specifically.

W IV

Etu(j)] - ex,p and Etii'(4)l

where p1 E li(4)( 1 ~E IV,,(C)I

If L( ~ Lip ~ P(k) .where P, (k) is some knownifunction of andi L, ahlnear, equation

(6) leads to the siniple expression

SL~c,E[P, (4)9,(t) I - EV(4() 9,(4) 1. (9)

Finite Element Method - Pseudo Monte-Carlo Perspective
Examining the proposed method one may view it a a Finite EFlewnA niethod for random media.

Thai is. it involves approximations of the random varables in the finite dimensional subspam defined
by some finite pantiion of the sample space.

from another perspective. examining equation (7) one can deduce that his equation is equivalent
to the following

I ý ,- 4 p 4- 0. (10)

If the Lebesgue integraJ involved in equation (10) can be interpreted in the Rieamnfn snse and all quan-
ities in the above expression am adequately smooth, the mean-value theorem stales that them exists

some 0 , R such that

This equation shows that c, represent just a solution of equation (1) for the realization j of the random
vector _. Then, the sequence of the equations (7) can be interpreted as a sequence of Monte-Carlo sim-
ulations. In fact, this sequence of "pseudo-simulations" is optimal in the sense that every elemenm of thds
sequence represents a cenran region of the sample space and can be interpreted as the only outcome
with given probability.

For the implementation of this method, first the entire sample space is divided into some assembly
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of subsets, the mesh of events. with given probability mass, Then. certain elemenis are chosen from
every subset. and the sequence of equations (I) is treated as a detemriistuc one- lhis funher assumed
tft these elements of the sample space represent a realization of the random vector ;. Then, statistical
anatlysts ux condutsed assurrurig that the derived deterministic soluuions are the only possible outcomes
with given probability. It is clear thai this algorithm relates to the Monte-Carlo method. Thus, it should
work at least as well as the Monte-Carlo method. Further. it exhibits the appealing featuire of choosing
the points from the subsets in an optimal way, namely in the sense of the projecton represented by the
equation (6).
Example: Eigenvalue Problem for a Beam

The proposed method was applied 1o the eigenvalue problem of a clamped-clamped beam of unit
length; its rigidity is a inuncased normal random process with mean equal to I and atutocorretlaticx func-

REI(XI.XI) - <1 exp (- X-XI
C

The case with cy - 0.3 and c=0.5 was taken. The corresponding equation is

(EI W ) ' - Xu. (12)
with boundary conditiorns u (0) - u( 1) - U, (0) - U,(l1) - 0..

This land of problem is quite difficuilt either for an anailytical or for a numerical treatmienit Only a
few papers are available on this topic. A description of pertnent analytical methods was presented by
Brure(1968). In the papers of Hasselman and Han (1972), and Grsgonu (1991) some numerical exam-
ples of solution of stochastic eigenvalue problems can be found. However, thesie algorithms can be
applied in the case of small randomness only and can be computationailly costly.

In implementing the proposed method. fiast the discretization procedune is applied to obtain a finite
dimensional problemri. For this purpose the Finite Difference method, see also Spanos and Zeldin (1992).
is used. This leads to the equation

Au - k,(13)

where A is a matrix with random variables as elements and u is a random vector. Subsequently the Kar-
itunen-Loeve expansion. see also Ghanem and Spanos (1988.1991), can be applied to represent the
amatn A un the form

A - , +ý,A +. ,ý,, +...(14)
where 41. t, .,.. are st~atistically independent random variables. The series in equation (14) can
be truncated beyond order M, and the random vector -(.....)can be introduced. Next, the
random domain is divided into a set of rect~angles

of prescribed probability mass. Then, the basis ip) can be constructed to conform with equation
(2). Next. u and X~ can be taken in the form

IV N

U(IM)- X(j)(V (15)

Substituting equations (14) and (15) into equation (13). multiplying it by ip. (4) ,and taking the mathe-
satical expectation of the result yields

(A0 + *A, + 4ýA,) v, -' ,v l,.N (16)

where 4 ,p 0p (- d4 - p - 1 ~ (dý and p, 4p ,(4)P; ;pt (t)ddg.

Finally, statistical analysis can be performed in conjunction with equation (8) to estimate the moments
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of the first two eigenva]ues and eigenvecto.

Numerical Results - Concluding Remarks
The theoretical values of the first two eigenvalues for the determunistic cae. when the beam rigidity

is set equal to the mean rigidity of the problem under consideration. are ,' 22.37 ad
)411 - 61.67. The corresponding dete•nniusuc finite difference approximation with 41 node points
gives Xr,,"' . 22.32 and ."If - 61.33. It was found that despite the considerable variability in the
rigidity of the beam. the variability in the eigenvectors is negligible. However, the variability in the
eigenvalues is essential and for a - 0.3, as in this example, is of the order of 10%. tee Figure I. The
influence of different 4, was studied. It was found that for this problem the third term in equation ( 6) is
almost negligible. The results in terms of convergence of this method for different order of partition of
axis 41 and 92, that is for different numbers of pseudo-simulatiatt, are plotted in Figure t(a) for the
standard deviation of 'L,. and in Figure l(b) for the stard deviton of X, It is see that this method
gives quite good approximations even when the number of pseudo-simulations is very small, whereas
the Monte-Carlo method yields reliable results only if the number of the simulations used is large. The
mean of the first and second eigenvalues was found to be 21.98 and 60,40, esp•etively. Thus, the meaw
values slightly decline to smaller values compared to the deterministic ctse.

It appears that the discussed method can be applied for treating a wide class of problem dealing
with random variables arid stochastic processes. Thus, further research mghat be warTanted.
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4) Stochastic Mixed Finite Difference Method

P.D.Spianos', B.A.Zeldizs

Abstract
Some aspects of numerical solutions of stochastic mechanics problems awe considered. The Finie Differ-

ence method for discrenzution of stochastc continuous media problems is discussed- The Neurrann expan-
sion and perturbation methods used for solving the asoisied system of algebraic equations am~ alyw&d
Their dependence on the mesh size of the discretization is investigated. Ic is showni tam a mixed formulation
using both strain and stress as independent variables improves the performamc of these methods and reduces
their dependence on the mesh suet.

Key words:, rsndom variable, randoms process, Finite Element method, Finite, Difference, method, beam
equation. pertubattion method, Neumann expansion, convergence-

Introduction
Recently. considerable attention has been given to the solution of engineering problems with randomness

in the sptimal domain. Clearly, the spsciatl dependence hinders solving these problems exactly. Thus. aippixoi-
mate methods of solution have been pursued. The main idea has been to implement the well knIown and
widely used Finite Elemert (1715) or Fuutie Difference (FDWA methods. A number of papess have appeared
recently on this topic addressing lineiar or nonlinear and static or dynanic problems, see for example Ghanem
and SpanoW198&,1991). Liu W.K,etal.(1986). Vanniarke arid Grigoriu(1983). Takada. (1990), Yansazaki.
et.al.(1986).

Usually such an analysis involves tw'o steps. The first step is to introduce some discretization of tie con-
tinuous medium problem, which leads to a system of stochastic algebraic equations; the second step addresses
the solution of this system.

In this paper some new aspects of solving continuous media Problems with randomnness in the spatial
domain using FDM are considered.

Discreization Techniques
Several diffeims techniques for random problem dzscretizcato have been developed, Typically they use

the followuing random field represenitation

f (X) - Ecjv1 (X). (1)

where f (x) is a random field, c. are random variables, and v. (x) are basis fuinctions built uponosome aippro-
pniate partiion of the problemn.dsanetn and Spaiuss1988.199) used this form for stochastic field representa-
tion with basis functions from Kurbunen-Loeve expansion. After such a discretization in the random domain,
the Finite Element procedure was applied. Alterniatively Takada (1990) and Deodaids. etc.( 1991) used the so
called Weighted Integral method which is staightforwaid application of FEM to the random problems.

Interestingly, stochastic FDM has not received much attention. In the zeterninistic case often FDM has
some advantage over FEMv due to simlplticiy in formulation and analysis. The same can be said concerning
stochastic problems. A simular foirmulation was innoduced by Vauntarke anid (Jngoriu (1983) for the simple
case of a statically determissnat sthear beam.

A Finite D~ifference approximation for a differential operator is next discussed. Let u (x) be a stochastic
process. Then. the mean-square derivatives of u (x) in some point x I can be approximated by using the cen-
tral difference formulae

1. L. B.Ryon Chair in Engng..Rios Univ.. PO.Bos 1892. Houston, Texas 7725 1.
2. Graduate student Civ. Emmgng.. Rice Univ., PO Box 1892. Houston. 'Texas 772351.
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W. x) 2h -dx
2 (11- 2

where u1 is arandomvariable equal to u (x) and his the meshsizeof thepmrtition involving N+lInodes.
Using theseequatsons the beamnopeuator Lit(x) - (EI(x)u*(x)) canbeapproxmasngdbythiealua-

tion

Lu(xd) -1(E -ui2 (-2(E11  l +Ei~) )ui2 +l (Eli_ +4El1  Ell 1)ul

where it, are nodal points, i=O~l,..N.
Appending to equation (3) the corresponding approxItuations of proper boundary conditions, a system of

linear stochastic algebraic equations can be formed, Specifically,

Au .f , (4)

where A is a mania with randor variables as elements. u is arandortivector of the solution, and f itsa vecor
of load which in general is random.

Solution of the Systems of Algebraic Equations

The solution of the problem described by equation (4) is crucial in computational stochastic mechanics.
Seversl meliods have beet developed for this purpose. Orae of them is the Monte-Carlo simulation method
which has been widely used. Thiis method was incorporated in FEM by Shino=uka and tus assiociates (1972),
who developed an algorithmn for the stochastic field sunulatmon- A recent imnpiementhsoon of thit methcd
includes the Neumann expansion of maance introduced by Yamnazakiet~al.(1986). However. this method
may demand large comnputatoonal rebources. Another quite commoon method relies oni perturbationt expan-
sion which providea sufficiently good restilta when the randomness is not very larg (Traka*a(991). Liui.

eil(90)Othe-wise this method can give eroneous results-
Alternatively. the Neumann expantsion methd cart be utiltzed- in fact that is some sort of generalizutton

of the perturbation method. It was used by several investigations such as in Gltanemi and Sparmo (1988.
1991). Adomian and Mallkian (1979) and Ysmautzki. eta]. (1988). We the manic A in the equation (4) be
expressed as A - A + A wip AO - (A) andl A - A -A 0  Subsrtituting tiusexpressioriwto equa-
tion (4) and muluplying itby A0 qives

(l+AO IA)u - AO
1 
if)

Further, it is possible to introduce the followuing equality

U (-I) k(A 0 IA) kA0 ! f- A0 If-A0 IAA 0 1f+ (AO A) 2AO it (6)

k-li

Eqygtcn1 (
6
1 has only a formnal meaning as it is assumed tMa this series converge to

(Il+A- A) A6 f .Examination of this reveals that the convergence problem istrima trivial one One of
the su~cient coniditioins for this is the following almost surely inequality

11 A4A'ý i.q < I (7)

Note that the condition given by equatori(7) is too restrictive and difficult for analysts. Adomiuan "n Malk-

ian (1979) considered linear differential operator L - At(d-) with randomness in the last coefficient a0 .

Convergence of these series was proved and the error of truncation was estimated in that case However, in a
number of papers this method was applied even when other coefficients a 1. 1 -. N were random;i see Gha-
nessi and Sparios (1989,1991), Adontuan (.1979). Ysmnazaki and etc.(1988 It is not difficult to note that for
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continuous problem operator d/dt is rtot boqneiad for discrete c&s cibhvsa ~.were h is a mesh
size, Thus. fcx the beum problem th no I7A;'A may grow as I/h

One can show that the pemrturation method represents cthe Neumanan expansion truncated to the first 2
terms. Then. it can be concluded that whenever the mesh of the discretizatcon is sufficiently smaull, both the
perturbation and Neumanani expansion rmethods of solution of a system of algebraic equations may behave
poory due to the unboaundedness of the differential operaso.

Mixed Method

It is possible to overcome the convergence obstacle using the concept of Mixed FOM. The applccahility
of this concept has been demonstrated for the solution of determiunistic problems with cson-asnoothi coeffi-
cients. In fact this method allows the elcmination of non-smooths coefficients is the left hand side of the differ-
ectital equatsons describing the problem, This method can be helpful anid for the stochastic case where it is
necessary to find ant algorithmn allowing the use of the Neumanatn expansion prcseducre. IWeed. for the beans
problem the new variables v (x) - u (a) and v2 (a) - Elu" Ws cats be jintroduced. Thsen, the beam
equation can be writtcen intoe Itit

B"fv q.(8

where v B .. ( f () andi Clq (qn

As one can see from equation (10), the random coefficient of this equation is associated with a term
which does not involve differentiation. Therefore, the dependence of A-, All on tse mesh size can be
avoided.1

To show the applicability of the method discussed. consider a clamiped-clamped beam subjected to deter-
muinstic force q--l with the bending rigidity being a normal random process as shown in Figure I. The bend-
ing of this beams can be described by equation (8) with bounsdary conditions v, (0) - v, (I)=
=v1 (0) - v', (1) - 0-Tosolvethis problem FDMcan be, &Wied i esulsin an equ~ on surulas to
equation (4). Consider a case where

It(x) - I .!- (k (x)) I and (k (x I)k (x 2) a2 exp(
El (X) c

where a - 0.3 and c - l.0.Meshes with 10 and 20nods were chosen.Thbesecond stausucalmomenjts of
displacement and bending moment were calculated based on the expressions

Cov (v) - (vvt) ((A I A) k - e- A IA u u (9)

k. I-odd >0

where (u)- _ .. )k((A01iA)k Aof).
k-0

The performnance of these statistical moments with respect to the order of the truncation was investigated. The
results obtained for vartance are plotted in the Figure 2. Itisi seen that the mixed formulation improves the
convergence of Neumsann expansion and remsoves its dependence on tid mesh size. These results are nsot
affected by the partition and even the first order perturbation method is acceptable. T'his is especially lrtte with
regards to the displacement variability even if the coefficient of vatiation of the bean rigidily is large. How.
ever, the bending moment variance performs poorly compared to the displacement one and fth second tert of
the expansion (9) should be used- it is seen that 30%. approximattely, of the variability of the beam rigidity
induces 10%, approxiriatelly, for the coefficient of variation response. That coincides with other results (Ohis-
noan and Spanos (1988,199 1)).
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5) INDIRECT SAMPLING METHOD FOR STOCHASTIC MECHANICS

PROBLEMS
P.D.Spanos' B.A.Zeldiiu 2

INTRODUCTION
The Monte-Carlo simulation method has been widely used in the field of stochastic mechanics and

others fields, primarily because of its versatility. Often it is the only option available to solve complex
problems. However, indiscriminate use of the method can not be advocated due to its considerable com-
putational cost. In fact, several variance reduction techniques have been developed in this regard. They
involve importance sampling, stratified sampling, and others [I).

A numerical method for problems of stochastic mechanics and other areas representing the solution
by a small number of random parameters is presented. In essence, it is a stratified sampling method, but
more efficient. Alternatively, this new method can be viewed as a Galerkin approximation in the sample
space. Several examples are considered involving the use of the Loeve-Karhunen expansion for stochas-
tic fields approximation [2,3]. The examples deal with the evaluation of natural frequencies and seismic
response of beams with random rigidity.

FORMULATION
Solution Representation

Consider a problem with random parameters governed by the equation
L (4) u" f (4). 1

where _ = ( is a random vector, and L(_) is a mathematical operator describing the
performance of the system. Further, f(4) describes the load, and 1 I2' .... M are statistically inde-
pendent random variables.

Solving euation (1) is equivalent to finding a function u = u (•) such that for every realization
= ( 1, 2, . :M) of the random vector 4 there exists a deterministic function u (4 which

satisfies equation (1). Consider the space RM of x I x2 × _M as the sample space i. This space can
be divided into N subdomains or strata { il i = 1, NJ having the shape of M-dimensional disjoint
rectangles with prescribed probability mass as shown in Figure 1 for M=2. Next. introduce the set of
functions or spline basis J cpi, i = 1, ... N} such that

1, if (2)

0, otherwise

Clearly, (pi (-) and qpj (g) have disjoint supports. That is,

q (_)(pi (4) j(p_)4(t_) dt f= 0 if i*j, (3)

where p, (_) is the probability density function of t, q (•) is an arbitrary random variable. Thus, the
set {fpi,-i = 1, . NJ is an orthogonal basis for the class of random variables which are constant for
every f2i" Any random variable can be approximated adequately by the use of these basis functions,
provided the partition of £n is fine. The solution of equation (1) can be represented as a linear combina-
tion of the functions {I cpi i = 1, ... NI. That is.

N

U () E ii M (4)
i-I

1. L.B. Ryon Chair in Engineering. Rice University, P.O.Box 1892, Houston. Tx 77251
2. Research Assistant, Civil Engineering, Rice University. RO.Box 1892, Houston. Tx 77251



where the coefficients ci are to be determined.
Then, the solution given by equation (4) can be construed as a projection of the exact solution into

the space spanned by J Vi, i = 1, ... N}. Expressing the solution in the form of the equation (4), the
induced error in the equation (1) can be made orthogonal to the space spanned by {Iq(i, i = 1, ... N}
That is. using the operator of mathematical expectation. < >. it can be found

N
(L(• Eciei ((P-))J (4))) Vf( M•Pj (•-) j = 1, ..... N .(5)

i-!

which, because of equation (3), leads to

(L= (f()) i()) 9 (6)

This sequence of deterministic equations can be solved to find the coefficients ci. Upon deriving
ci. the statistical properties of the solution can be estimated by relying on equation (4). Specifically,

N N

(U(_))= Ecipi and (u2()) 2 E pi (7)
i-i i-I

where

Similarly, the distribution function of the solution can be found using the equation

N

Pu (v) = Pr(u <v) = E xv(Ci)Pi. (9)
i- 1

where

I ifxsv
= 10 ifx> (10)

Solution Interpretation
The proposed method may by viewed as a Galerkin-type procedure for random media. Several

authors have explored the idea of using projection procedures in conjuction with random variables. In
references [2.3.4,5,6] this procedure has been applied for stochastic mechanics problems with random-
ness in the spatial domain. Due to the correlation between the solution and the random parameters
describing the properties of the structures, this class of problems is especially difficult to solve. In this
regard, the stochastic field has been discretized by the use of the Loeve-Karhunen expansion in refer-
ences [2,3,4] or of the midpoint method in reference [5]. In this manner the problem is first character-
ized by a finite set of random variables. Then, the solution can be derived by a Galerkin projection into
finite dimensional spaces spanned by orthogonal chaos polynomials as in references [2.3,41, or just lin-
ear functions as in reference [5]. However, these bases can yield a large order system of equations which
must be solved to determine the solution.

Another possible basis for the representation shown in equation (4) is given by equation (2); see
also reference [6]. The concept of using spline type approximation has been discussed widely in the area
of computational mechanics in connection with the finite element method. From this perspective, the
system of functions { (p, I N represents the simplest spline of piecewise-constant functions. Then, the
proposed method involves approximation of the random variables in the finite dimensional subspace of
splines defined by some partition of the sample space. Additional advantages of this representation
relate to equation (3) since each term ci in the expansion (4) can be found independently. Therefore.
every term ci in equation (4) can be readily determined.

2



From another perspective, the use of piece-wise constant functions makes this method a general-
ized sampling procedure. Indeed. examining equation (6) one can deduce that this equation is equivalent
to the following

[L(t)ci0-f(4)]p4(4)d=. (-1)

If the Lebesgue integral involved in equation (11) can be interpreted in the Riemann sense and all perti-
nent quantities are adequately smooth, the mean-value theorem states that there exists some E Q21
such that

L() ci --f((12)

This equation shows that ci represents just a solution of equation (1) for the realization _ of the ran-
dom vector _. Then, the sequence of equations (12) can be interpreted as a sequence of samplings. In
fact, this "indirect sampling" is optimal in the sense that every element of this sequence represents a cer-
tain region of the sample space and can be interpreted as the only outcome with a given probability.
Moreover, as _ E £2i, the proposed method can be viewed as analog to stratified sampling [1]. But
unlike the stratified sampling method the point inside every stratum is computed to make F ,me error of
the approximation of the given numerical problem (1) orthogonal to the chosen space and minimal for a
given stratification.

To show this properly regression analysis can be applied [7]. Any random variable E (ý) which is
a function of _ on the sample space can be estimated by 0 using the set of randoi-n variables
{I.i, i = 1, ... N} defined by the equation (2), where () is an arbitrary function of {JPi, i = 1, N}

rather than ý. This estimate provides a minimal variance for the difference E0 - 0. That is.

((03 -0 ) 2) is minimal. (13)

It can be shown, that as { cpi' i = 1 ... N} are indicator functions of disjoint sets. the estimate 6 can be
'rnd using linear regression analysis and the solution can be expressed as

0 = £ Oiti(•-) .(14)

i o
where 0i = (E1 O) - (ewpi) , and < I > Jenotes conditional expectation.

Let u (_) be the exact solution of the equation (1). and let Tt be an approximation of this solution.
Define the error of such an approximation by

S = L(•)ui-L(•)u -.- L(•_)i-f(•_). (15)

Then, the estimate i of , can be derived using equation (14). If the approximation ýi is taken from a
system of equations (5), then j = 0. Thus, the proposed method ensures that ti, error defined by the
equation (15) has a zero mean square estimate from the indicator functions of chosen stratification.

Related perspective can be generated using some algebra concepts [7]. The vector t defines a
sigma-algebra G in the sample space. and the stratification shown in Figure 1 defines a more coarse
pure atomic a-algebra G 1 C G with indicator functions {qui, i = 1, ... N}. Then, the above regression
analysis applied to the error E leads to

= 0 = (s GI)=0. (16)

In other words, this method yields the minimal error defined by equation (15) with respect to the coarse
o-algebra of given stratification.
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EXAMPLES
Preliminary Remarks

The proposed method is applied for uie analysis of the dynamic behavior of a beam of unit iength.
The beam problem can be described by the equation

(El (x) u"(x. 1) ) " = q (xv.t) , (17)

where u is the beam deflection, and q denotes the distributed force acting on the beam which in general
is taken as a stochastic process. The symbol El(x) denotes the beam bending rigidity which is assumed
to be a normal homogeneous stochastic process with mean equal to I and autocorrelation function

REI (xl, X2 ) o2 exp (x2 -xl)2

where a and c are constants. Thus. randomness is manifested in this problem through the operator and
the load.

In implementing the proposed method, first the approximation of the stochastic field EI(x) through
a finite set ef random variables is derived. For this purpose, the Loeve-Karhunen expansion is deemed
especially effective. It is an optimal, in the mean square sense, representation of the field over the set of
random variables. Subsequent application of the finite difference scheme [81 or of any alternative dis-
cretization scheme leads to the system of linear algebraic equations

(A0+glAI+...gMAM)u =f . (19)

where A1, A 2, - AM are matrices the dimension of which depends on the number of nodes used for the
discretization, u is a vector representing the solution at the nodal points, and f corresponds to the force.

Next, specific numerical examples of application of tie proposed method are presented; the numer-
ical values ca = 0.3 and c = 0.5 are used.
Beam Eigenvalue Problem.

The eigenvalue problem of a clamped-clamped beam is considered first. Then. the force in equation
(17) takes the form q (x) = Au (x). This kind of problem is quite difficult either for an analytical or for
a numerical treatment. Only a few articles are available on this topic. A description of pertinent analyti-
zal methods was presented by Boyce [9]. In the papers of Goodwin and Boyce[ 10], Hasselman and Hart
[11) some numerical examples of solution of stochastic cipenvalue problemw can be found. Note. that
these algorithms can only be applied in the case of small randomness and can be computationally costly.

In implementing the proposed nmthod. the random domain is divided into a set of rectangles
4_ 2g i<, i=l .... M; j=l ,. NI of prescribed equal probability mass. Then, the basis

{ 9i, = 1. N} can be constructed to conform with equation (2). Next. u and X can be expressed in
the form

N N

u(Y) = Yi(p(), and X(t) = Ec 1 ~it•) (20)
i-1 a-I

Substituting equations (20) into equation (19), multiplying it by q) (j) and taking the mathemati-
cal expectation of the result yields

(Ao+1, liAI +.. tM'iAM)Yi = civi i=l. N, (21)

where
Ap 0 Pi• eI't) l(0)'l•=lrýlj) 4 (4 mi = •p4 (d4 (22)

=k. = i t ) . and P i . (

Finally. statistical analysis can be performed in conjunction with equation (7) to estimate analyti-
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cally the moments of the first two eigenvalues and eigenvectors.
The theoretical values of the first two eigenvalues for the deterministic case, when the beam rigidity

is set equal to the mean rigidity of the problem under consideration. are X"'t 22.37 and
.de' - 61.67. The corresponding deterministic finite difference approximation with 41 node points
2 points

gives X -indlf 22.32 and "n'if = 61.33. It was found that despite the considerable variability in the
rigidity of the beam. the variability in the eigenvectors is negligible. However, the variability in the
eigenvalues is essential and it is of the order of 10%; see Figure 2. The influence of different number Ml
of used random variables has been studied. It was found that for this problem the contribution of the
terms beyond 42 in equation (19) is negligible. The results in terms of convergence of this method for
different order of partition of axes 4, and t2' that is for different values of number N or indirect sam-
plings, are plotted in Figure 2(a) for the standard deviation of X'1, and in Figure 2(b) for the standard
deviation of X,2 , It is seen that the proposed method yields quite good approximations even when the
value of number N is quite small. However, the Monte-Carlo method, that is when the parameters were
sampled arbitrarily, yields reliable results only if the number of the used simulations is large.
Beam Response to Deterministic Load.

The second problem involves continuous systems with random parameters exposed to deterministic
excitation. Specifically, the dynamic response of a cantilever beam to earthquake-type base excitation is
considered. In this case the force term in equation (17) can be expressed as

q (x, t) = ag (t) -1i (x, t) - aý (x, 1) , (23)

where a is a coefficient of damping, u represents the displacement of the beam relative to the base. and
a (t) is taken as the time history of the ground acceleration produced by the North-South component
ofEl Centro earthquake recorded on station No 117 and reported in the reference [12]. It is shown on
Figure 3 for comparisons with the beam response. Further, it is assumed that the beam has unit mass per
length. The discretization of the beam by a finite difference scheme built upon 20 nodes in the spatial
domain in conjuction with the Loeve-Karhunen expansion of the bending rigidity is used. Then, the
solution is taken in the form of equation (20) where in this case vi= vi (t) are deterministic vector-
functions. Substituting this expression into the resulting equation. multiplying it by T (t) , and averag-
ing, an uncoupled system of deterministic ordinary differential equations is derived. Each equation of
this system is solved numerically using the central difference scheme. Finally, the mean value and the
standard deviation of the free end displacement are determined by relying on equation (7).

The time history of the free end displacement of the cantilever beam having the mean characteristic
for the stiffness and damping is plotted in Figure 4(a). Further results of the calculations are shown in
Figure 4(bc) for different value of number N of indirect samplings. In Figure 4. N1. N2. and N, denote
the number of strata in the domain of ý 1. ý2. and ct. respectively. The case with ca - 0.4 which corre-
sponds to damping of approximately 6% of critical for the first mode of the system with deterministic
rigidity equal to the mean of the corresponding stochastic prob!em is considered. Also the case where at
is a random variable statistically independent from 4 and uniformly distributed between 0.1 and 0.7 is
examined. The computations show that 3 strata in the domain of a can adequately represent the depen-
dence of the solution on the damping variability. Also, the calculations reveal that only the first two
components of the vector . influence significantly the beam response. It can be seen that the dynamic
response of the beam to the deterministic excitation is strongly affected by the rigidity variability.
Beam Response to Stochastic Load.

The third problem is described again by equations (17) and (23) but it involves stochastic base exci-
tation. Specifically, a (t) is taken as a stationary random process. The proposed indirect sampling
method can be readily applied for treating this problem. The solution is expressed in the form of equa-
tion (20). In this case vi -, y (t) is not a deterministic vector-function, but a stochastic vector-process.
That is, vi (t) is the response of a deterministic system to random excitation. A number of techniques
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exist for the solution of this problem. In particular, a spectral approach can be applied provided that
aX (t) is a second order stochastic process. In the latter case the second-order characteristics of the
soution can be determined from the formulae

N N
E [n] F [ v[vi (t) pi and R, (Itlt2) = E R (1j.12)l, (24)

i-I i-Il

Then, this approach can be viewed as semi-analytical method analogous to the directional sampling. At
first, the vector 4 is simulated, and then. the solution for the given simulation is calculated using known
analytical techniques with subsequent application of some averaging as in equation (24).

Again. two cases for ax are considered. First, a is a deterministic coefficient, and second a is uni-
formly distributed random variable; it induces for each mode of the discrete model of the beam damping
6%, and 2% to 10% of critical, respectively. The power spectral density of the disp. .-ement of the free
end is calculated using the proposed method for a (t) being a white noise process of unit two sided
spectral density. The data for different numbers ofindirect samplings are plotted in Figure 5 together
with the corresponding solution for the response of a deterministic system with rigidity equal to the
mean rigidity of the stochastic system. Figure 5 shows that the randomness of the system has a signifi-
cant effect on the system response variability and reduces the peaks of the response power spectral den-
sity. The calculations show that only two first components of the vector 4 influence the first two
moments of the solution significantly. Further. the effect of the damping variability can be captured
using only two strata in its domain.

Concluding Remarks
A Galerkin-type numerical method for stochastic mechanics problems has been presented. Specifi-

cally, it has been proposed to use a Galerkin projection into the space of simple random variables. This
space can be spanned by the piece-wise constant spline functions with a chosen partition of the sample
space. Further. it has been shown that the proposed method can be construed a generalized sampling; it
iq proposed to call it indirect sampling. Indeed, it has been shown that this method is closed to the strat-
ified sampling method and it is optimal in the sense of equation (16). That is. the approximation of the
problem from the space of simple random variables produces an error with mean and conditional expec-
tation, given the sigma-algebra induced by this partition, equal to zero. It has also been shown that this
error has zero estimate from the set of indicator functions of the given stratification. Some stochastic
mechanics problems have been studied utilizing the proposed method in conjuction with the Loeve-Kar-
hunen expansion which is a versatile tool for the approximation of a stochastic field by a finite set of
random variables. These examples have demonstrated that the proposed method can be applied for treat-
ing a broad class of stochastic mechanics problems.
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Figure 4. Base excited vibration of the top of the beam: (a) deterministic systemwith mean characteristics; Nb mean value; (c) standard deviation, stochastic system
1...N =63 (Nj=9, N,=7) 2) ---- N = 7 (N,=7)

3) ---- N = 45 considering random damping (NI=5, N2=3, N(,=3)

101 3

4 22

04i6

5 
' 

1 4 5 
1,1 

7
Frequency (see') Frequency (,cl)

Figure 5. Spectral power density of the displacement on the top of the beam.
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